Meso-scale Simulations of Explosives:

A reality check

RALPH MENIKOFF, T-14

Meso-scale simulations

Continuum mechanical simulations that resolve heterogeneities

Applied to explosives

Burn is dominated by hot spots

Weak ignition

Shock desensitization

Need to resolve hot spots

Subgrain in extent

Reaction rates versus burn models

Reaction rates are for chemical processes

Burn models are homogenized or sub-grid models

Account for unresolved processes

Goals

Quantitative understanding of hot spots and burn rate

► Develop *improved* burn models

Burn models: state of the art?

Currently available burn models:

- Forest Fire
- ▶ DAGMAR "improvement" based on Lagrangian analysis
- ► Ignition & growth
- ▶ JTF

General comments:

- Heuristic and empirical in nature
 How are model parameters determined ?
- Models work for class of problems
 Those similar to experiments used for calibration
 Same distribution of hot spots
- Threshold phenomena

Ignition sensitivity, particularly to weak stimulus
Needed to assess accident scenarios
Qualitative but not quantitative

Are models adequate?

To judge burn models

Need suite of test problems

Chuck Mader compiling problems this summer Better to have consensus among modelers and users

Run all models on all tests
 Same model parameters for all tests

Need to study mesh convergence
 Distinction between model vs algorithmic implementation

AMRITA environment of James Quirk would be ideal tool

Fair comparison of models

Change burn model leaving everything else fixed Grid, hydro algorithm, viscosity, EOS, etc.

Automate running of tests

Minimize human labor

Standardized output

Plots of results on fixed scale

Open environment

Anyone can examine source and results of tests

Take advantage of WWW to exchange information

Additional Challenge

Predict effect of aging on explosives or more generally,

Predict sensitivity & performance based on

- Properties of componentsHE & binder
- Micro-structure
 Grain distribution
 Defects such as voids
- Impurities such as RDX in HMX-based PBX

For example

Predict differences in Pop-plot for HMX-based PBXs:

PBX-9404

PBX-9501

LX-10

EDC-37

Meso-Scale Simulations

Compaction Waves in Granular Bed of HMX

Compared with gas gun experiments of Sheffield, Gustavsen et al.

"Shock Loading of Porous High Explosives"

in High-Pressure Shock Compression of Solids IV:
Response of Highly Porous Solids to Shock Compression

LANL Shot #912 & Sandia Shot #2477

35% porosity & low impact velocity (280 m/s projectile)

Similar strength stress wave as DDT tube test of McAfee & Asay

"Compaction Wave Profiles: Simulations of Gas Gun Experiments" http://t14web.lanl.gov/Staff/rsm/preprints.html#CmpWvPrf

Results:

Mechanical properties

Heterogeneities give rise to fluctuations

Average fields have appearance of shock profiles

Compaction wave satisfies jump conditions

Temperature fluctuations

Localized hot spots (tail of temperature distribution)

Peak temperature well below melting

Too low for burn

Homogenized model is fine for inerts but not sufficient for reactive flow

Key Issues for Reactive Simulations

Dissipative Mechanism

- ► Fluctuations are sensitive to heterogeneities & dissipation Reaction rate dominated by tail of temperature distribution
- ▶ Dissipation predominantly near interfaces

Geometry

Granular bed is three-dimensional

Effects distribution of contacts and voids

Need 3-D simulations

Heterogeneities from anisotropy

Computational Dilemma

Grain distortion vs accuracy at interface

Eulerian algorithms can handle large distortion

But interfaces are smeared out

Multi-scale problem

Resolution affects peak temperature

Need adaptive mesh refinement

Material Properties

Significant uncertainty

Reaction Rate

Significant uncertainty

Material Properties of HMX

More important for meso-scale simulations than engineering simulations http://t14web.lanl.gov/Staff/rsm/preprints.html#HMXmeso

Hydrostatic EOS

Fitting Forms for Isothermal Data (with Tommy Sewell) http://t14web.lanl.gov/Staff/rsm/preprints.html#IsothermFit

Specific heat

Critical parameter for determining hot-spot temperature
 At atmospheric pressure

 C_p increases by 50% from room temperature to δ -transition Variation presumably due to intra-molecular vibrations Also, affects Grüneisen coefficient

Melt temperature

At atmospheric pressure, $T_m = 550 \,\mathrm{K}$

Dependence on pressure ?
Affects viscosity coefficient

Model EOS accounts for latent heat but not volume change

Yield strength

From elastic precursor, 2.6 kb
From hardness measurements, 1.3 kb

▶ Brittle ductile transition with confinement pressure

Reaction Rate

- Arrhenius rate, $R = (1 \lambda)Z \exp(-T/T_a)$
 - R. Rogers data, $Z \& T_a$ for liquid phase

Shock in single crystal HMX (B. Craig)

For $P_s = 340 \, \mathrm{kb} \lesssim \mathrm{P_{CJ}}$, induction time greater than 1 $\mu \mathrm{s}$ Orders of magnitude larger than predicted by rate constants

- ► Rate for single crystal and liquid are significantly different
- Pressure dependence of rate

Calorimetry data indicates Z is function of P.

Cook-off experiments

Atmospheric pressure

Multi-step reaction

First step is $\beta - \delta$ transition (Henson et al.)

Endothermic, $\Delta T = Q/C_v \approx 200\,\mathrm{K}$

Expansion $\Delta V/V \approx 8\%$

Transition time $\sim 25\,\mathrm{ms}$ at melting temperature

and decreases with increasing temperature

Nucleation depends on impurities/defects

For shock heating, possibly $\beta \to \text{liquid}$

Co-existence curves are not known

▶ Confinement would affect transition, $\Delta P = K\Delta V/V$

Model Problem

Shock initiation, $P_s \gtrsim 100 \, \mathrm{kb}$

Dominated by void collapse (Mader)

$$Re = \frac{\ell u \rho}{\mu} \gg 1$$
 (for $\mu = 1$ Poise, $\ell \gtrsim 1 \, \mu \text{m} \& u = 1 \, \frac{\text{mm}}{\mu \text{s}}$, $Re \gtrsim 20$)

Likely to require less resolution than weak ignition

Single Curve Build-Up Principle & Pop-Plot

- 1. Implosion of single pore
 - ▶ Reaction quenches due to expansion & heat conduction Hot-spot temperature & energy release as function of P_s
- Interaction of many pore collapses
 Pressure waves from hot spots interact
 Shock heating not sufficient
- Coupling to shock front
 As hot-spot temperature increases, induction time decreases
 and time delay for acoustic wave to reach front decreases

Shock passing over void creates hot spot
Energy release from hot spot increases shock pressure
which increase strength of hot spot
and increases even more energy
Then feedback results in build-up to detonation

Both Pop-plot data and velocity profile data from gas gun experiments